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1. Introduction

In this paper we construct the equilibrium Glauber and Kawasaki dynamics on the discrete particle systems such that
certain determinantal point processes are invariant under the Markov processes.

The determinantal point processes, or fermion point processes, are point processes whose correlation functions are
given by determinants of kernel operators. It was invented by Macchi [13] and then has been extensively investigated
by many people. It appears in many fields in mathematics and physics, for example, in random matrix theory and in
fermion particle systems. For the details we refer to [10, 20, 21, 23] and references therein.

The construction of equilibrium dynamics is one of interesting subjects for the determinantal point processes.
One approach is to construct the diffusion processes via Dirichlet forms [12]. During the last two decades there have
been many works on the construction of equilibrium diffusion processes for Gibbs measures of interacting particle
systems. We notice that the interacting Brownian particles of logarithmic potential, which is related to the
determinantal point process of sine kernel and is called Dyson’s model, was studied by Spohn [24]. Some related works
to Dyson’s model were also done recently in [6, 16]. The diffusion process via Dirichlet form for the determinantal
point processes in the non-percolating regime, or equivalently in the high temperature or small activity regime, was
constructed by the second named author [25]. The other approach, in particular for particle systems, is to construct the
particle birth and death processes, so called Glauber dynamics, and the particle jump processes, called Kawasaki
dynamics. The general interacting particle systems in discrete model were developed in detail by Liggett [9]. The
Glauber and Kawasaki dynamics for the continuum models have been investigated in the literature [3–5, 7, 8, 17].
Among these, Kondratiev et al. established the Dirichlet form approach for the construction of the equilibrium Glauber
and Kawasaki dynamics for continuum systems so that the Gibbs measures for the system are invariant under the
Markov processes [7, 8]. For instance, the standard superstable interaction of Ruelle [18] falls into their regime of
applications. Lytvynov and Ohlerich applied the methods developed in [7, 8] to construct the equilibrium Glauber and
Kawasaki dynamics that leave invariant certain determinantal point processes in continuum model [11]. The Glauber
dynamics for discrete determinantal point processes was studied by Shirai and the second named author [22]. This
paper can be regarded as a continuation of the work in [22]. We emphasize that the Markov processes constructed in
this paper are Feller processes. That is, the semigroup acting on a continuous function gives rise to another continuous
function. But the Markov processes constructed via Dirichlet forms are Hunt processes and the semigroups act on
L2-functions.

Let us briefly sketch the contents of this paper. We consider the infinite particle system, particles living on a discrete
set, say E. We consider the determinantal point process � on the configuration space X. The point process � has a
defining kernel operator K of the type K :¼ AðI þ AÞ�1, where A is a positive definite, bounded linear operator on l2ðEÞ
that satisfies some hypothesis (H) (see Section 2). Under the hypothesis (H), � is known to be Gibbsian [26]. The
generators of Glauber and Kawasaki dynamics have the form (see subsection 2.1 for the details):
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LðGÞ f ð�Þ :¼
X
x2�

dðx; �Þ½ f ð� n xÞ � f ð�Þ� þ
X
y2En�

bðy; �Þ½ f ðy�Þ � f ð�Þ�;

and

LðKÞ f ð�Þ :¼
X

x2�;y2En�
cðx; y; �Þ½ f ðy� n xÞ � f ð�Þ�;

where dðx; �Þ and bðy; �Þ are death and birth rates for Glauber dynamics, and cðx; y; �Þ are the jump rates for Kawasaki
dynamics. In Subsection 3.1, following Liggett [9], we introduce the basic strategy to show the existence and ergodicity
of the dynamics. Next for point processes with Papangelou intensities, we will give necessary conditions for the rate
functions to satisfy the detailed balance condition (Theorem 3.3). Then we apply these ideas to our model. Given a DPP
� for a kernel operator which satisfies certain hypothesis, we give some concrete formulas for the rate functions
(Proposition 3.5) and present the conditions for existence in the language of Papangelou intensities (Proposition 3.7).
To guarantee that the conditions for the existence and ergodicity are satisfied, we need further stronger conditions
introduced in Assumption (A) in Section 4. Under the assumption (A), we finally construct the dynamics of our purpose
(Theorem 4.2). In the Appendix, we provide with a proof of a technical lemma, Lemma 4.1, which is worth to be
noticed in itself.

Finally, comparing to [22], we would like to mention that in this paper the Kawasaki dynamics is included and the
concept of Papangelou intensities is used in a crucial way to construct the dynamics. After denoting the detailed
balance condition by Papangelou intensities, it is possible to choose the flip or jump rates for the equilibrium dynamics
in many ways. In [22], we dealt with just one choice among them (see Remark 3.6). However, at the moment, we have
to assume seemingly almost the same conditions as in [22]. Our future studies are addressed to

- the construction of the Glauber and Kawasaki dynamics under weaker conditions, at least under the hypothesis
(H);

- the investigation of the spectral gap, or log-Sobolev inequalities for the generators of the Markov processes.

2. Preliminaries

In this section we briefly recall the definition of Glauber and Kawasaki dynamics for spin systems, or equivalently
lattice gases. Then we introduce the determinantal point process in discrete spaces and their Gibbsianness.

2.1 Glauber and Kawasaki Dynamics for Lattice Gases

Let E be any countable set. We have in mind the system of the lattice space with E ¼ Zd, the d-dimensional integer
lattice, but we deal with arbitrary discrete set E. Let X be the set of all subsets � � E, called the configurations.
For any subset � � E and � 2 X, we denote by �� the restriction of � to �:

�� :¼ � \�: ð2:1Þ

From now on if a subset � � E is finite, we denote it by � �� E. For each � � E, let F� be the �-algebra on X

generated by the functions � 7!j��j, � �� �, where j��j means the cardinality of the set ��. Thus we get an
increasing system of �-algebras fF �g���E and we let F :¼ F E. Any probability measure � on ðX;F Þ is called a point
process. We notice that the �-algebra F on X can be understood as a Borel �-algebra by a natural identification of X
with f0; 1gE equipped with the product topology. This identification is taken for granted in this paper, and consequently
we will also consider X as a topological space. Notice in particular that X is a compact space.

Let CðXÞ denote the set of all continuous functions onX equipped with the sup-norm k � k. For f 2 CðXÞ and x 2 E,
let

�f ðxÞ :¼ supfjf ðx�Þ � f ð�Þj : � 2 Xg; ð2:2Þ

where we have used a shorthand notation x� :¼ fxg [ �. We define a subset of ‘‘smooth’’ functions DðXÞ [9] by

DðXÞ :¼ ff 2 CðXÞ : jjj f jjj :¼
X
x2E

�f ðxÞ < 1g: ð2:3Þ

By the Stone-Weierstrass theorem, we easily see that DðXÞ is dense in CðXÞ.
The generators for Glauber and Kawasaki dynamics are defined as follows. We first consider Glauber dynamics.

For each x 2 E, let bðx; �Þ and dðx; �Þ be nonnegative continuous functions on X. They are called birth and death rates,
respectively. Namely, given a configuration � 2 X, a particle is born at site x =2 � in a rate bðx; �Þ, and among the
particles � a particle at x 2 � dies out in a rate dðx; �Þ. For each x 2 E, we define

cx :¼ sup
�63x

maxfbðx; �Þ; dðx; x�Þg; ð2:4Þ

and define
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cðGÞ :¼ sup
x2E

cx ð2:5Þ

Next for Kawasaki dynamics, we need the particle jump rates. For each x 6¼ y 2 E, let cðx; y; �Þ be a continuous function
onX whose values are defined to be zero unless x 2 � and y =2 �. It is the rate for a particle at x 2 � to jump to the empty
site y 2 E n �. We will also need to control the particle jump rates. For each pair x 6¼ y 2 E, define

cfx;yg :¼ sup
�63x;y

maxfcðx; y; x�Þ; cðy; x; y�Þg; ð2:6Þ

cðKÞ :¼ sup
x2E

X
y 6¼x

cfx;yg: ð2:7Þ

We will assume that cð]Þ < 1 for ] ¼ G or K. Under this assumption, the Markov pregenerators for Glauber and
Kawasaki dynamics are defined as follows. For f 2 DðXÞ, we define for Glauber dynamics

LðGÞ f ð�Þ :¼
X
x2�

dðx; �Þ½ f ð� n xÞ � f ð�Þ� þ
X
y2En�

bðy; �Þ½ f ðy�Þ � f ð�Þ�; ð2:8Þ

and for Kawasaki dynamics

LðKÞ f ð�Þ :¼
X

x2�;y2En�
cðx; y; �Þ½ f ðy� n xÞ � f ð�Þ�: ð2:9Þ

Here we have also used a short notation � n x for � n fxg. For a definition and proof that Lð]Þ, ] ¼ G or K, becomes a
Markov pregenerator, we refer to [9, Definition 2.1 and Proposition 3.2].

In this paper we will investigate the conditions on the rates bðx; �Þ, dðx; �Þ, and cðx; y; �Þ so that not only (the closure
of) Lð]Þ, ] ¼ G or K, becomes a Markov generator on CðXÞ but also it leaves invariant certain point process � on
ðX;F Þ. We are concerned exclusively with determinantal point proccesses on E, which are briefly introduced in the
next subsection.

2.2 Determinantal Point Processes

Determinantal point processes (DPP’s hereafter), or fermion point processes, are the probability measures on the
configuration space of particles. The particles can stay either on continuum spaces or on discrete sets. The correlation
functions of DPP’s are given by determinants of a priori given kernel operator as shown in Theorem 2.1 below.
Typically, they have a fermionic nature, namely, the energy increases when new particles add into a given
configuration of particles. For the basic theories of DPP’s we refer to references [10, 13, 21, 23]. Here we follow the
reference [21] for the introduction.

Let E be the countable set in the previous subsection and let K be a Hermitian positive definite, bounded linear
operator on the Hilbert space H0 :¼ l2ðEÞ, the set of square summable functions (sequences) on E equipped with the
usual inner product:

ð f ; gÞ0 :¼
X
x2E

f ðxÞgðxÞ; f ; g 2 H0: ð2:10Þ

The induced norm is denoted by k � k0. The following is an existence theorem for DPP’s, which we present in the form
stated in [21].

Theorem 2.1. Let E be a countable set and K a Hermitian bounded operator on H0. Assume that 0 � K � I. Then,
there exists a unique probability measure � on ðX;F Þ such that for any finite set fx1; . . . ; xng � E, the n-th correlation
function is given as follows:

�ðnÞ� ðx1; . . . ; xnÞ :¼ �ðf� 2 X : � � fx1; . . . ; xnggÞ ¼ detðKðxi; xjÞÞ1�i; j�n: ð2:11Þ

Next we discuss the density functions for DPP’s. For each subset� � E, let P� denote the projection operator onH0

onto the subspace l2ð�Þ and let K� :¼ P�KP� denote the restriction of K onto the projection space. For each � �� E,
assuming at the moment that I� � K� is invertible, we define

A½�� :¼ K�ðI� � K�Þ�1: ð2:12Þ

The local marginals of the DPP � corresponding to the operator K are given by the formula: for each � �� E and fixed
� 2 X,

��ð��Þ :¼ �ðf� : �� ¼ ��gÞ ¼ detðI� � K�Þ detðA½��ðx; yÞÞx;y2�� ; ð2:13Þ

where A½��ðx; yÞ, x; y 2 �, denotes the matrix components of A½��. We remark that the r.h.s. of (2:13) can be given a
meaning even when I� � K� is not invertible [21, 23].
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2.3 Reproducing Kernel Hilbert Spaces, Papangelou Intensities and Gibbsianness of DPP’s

In this subsection we briefly discuss the Gibbsianness of DPP’s. To show the Gibbsianness of a point process � is
equivalent to show the existence of global Papangelou intensities of � [14, 15, 19, 21]. Since the Papangelou intensities
are the key ingredients for the construction of equilibrium dynamics we review it for our model from [26]. We start by
introducing a dual pair of reproducing kernel Hilbert spaces [1].

Let A be a positive definite, bounded linear operator on H0 � l2ðEÞ (the operator will define a DPP via the operator
K :¼ AðI þ AÞ�1). We assume that KerA ¼ f0g, so RanA is dense in H0. We introduce two new inner products ð�; �Þ�
and ð�; �Þþ, respectively on H0 and RanA as follows. First on H0, define

ð f ; gÞ� :¼ ð f ;AgÞ0; f ; g 2 H0; ð2:14Þ

and on RanA define

ð f ; gÞþ :¼ ð f ;A�1gÞ0; f ; g 2 RanA: ð2:15Þ

The induced norms will be denoted by k � k� and k � kþ, respectively. Let H� and Hþ be the completions of H0 and
RanA by the respective norms k � k� and k � kþ. We then get the following rigging of Hilbert spaces:

H� � H0 � Hþ: ð2:16Þ

We let B :¼ fexgx2E be the usual basis ofH0, i.e., ex is a function on E whose value at x is 1 and the values at other sites
are all zero. Let Aðx; yÞ; x; y 2 E, be the representation of A w.r.t. B. Then we notice that Hþ is a reproducing kernel
Hilbert space (RKHS hereafter) with reproducing kernel (RK shortly) Aðx; yÞ. That is, Hþ is a linear space of functions
on E with the following defining conditions:
(i) For every x 2 E, the function Að�; xÞ belongs to Hþ;
(ii) The reproducing property: for every x 2 E and g 2 Hþ, gðxÞ ¼ ðAð�; xÞ; gÞþ.

We want H� to be also a RKHS (it is not the case in general), so we assume the hypothesis below throughout this
paper:

Hypothesis (H): We suppose that H� is functionally completed [1], i.e., any vector of H� can be represented as a
function on E.

For sufficient conditions for the hypothesis (H) we refer to [26, Appendix]. Under the hypothesis (H), H� becomes
also a RKHS with RK, say Bðx; yÞ; x; y 2 E [1, 26]. Informally speaking, Bðx; yÞ is the matrix representation of A�1,
though it is not of bounded operator in general. In particular, under (H) we have ex 2 Hþ for all x 2 E [26]. The flip
or jump rates of our dynamics will be defined via the Papangelou intensities (defined below) of the DPP �
corresponding to the operator K :¼ AðI þ AÞ�1, which are in turn the squared norms of the vector-projections in
the Hilbert space H� [26]. In particular, the interdependencies of rates, which must be controlled for the
construction of the dynamics, are represented by the inner products in the restricted Hilbert spaces of H�
(see Proposition 3.8).

As mentioned above, we are concerned with DPP’s corresponding to the operators K :¼ AðI þ AÞ�1. In order to get
the Papangelou intensities, we need a variational principle [26]. For each � �� E, let

Floc;� :¼ the linear space spanned by fex : x 2 �g: ð2:17Þ

Let x0 2 E be a fixed point and let E ¼ fx0g [ R1 [ R2 be any partition of E (one of R1 and R2 might be the empty set).
For each � �� E, define

�� :¼ inf
f2Floc;�\R1

kex0 � fk2� and �� :¼ inf
g2Floc;�\R2

kex0 � gk2þ: ð2:18Þ

Obviously, f��g���E and f��g���E are decreasing nets of nonnegative numbers. Consequently we define

� :¼ lim
�"E

�� and � :¼ lim
�"E

��: ð2:19Þ

The variational principle says that, under the hypothesis (H), no matter how we take a partition E ¼ fx0g [ R1 [ R2, the
product of � and � is equal to 1 (see [26, Theorem 2.4] and also [21]):

�� ¼ 1: ð2:20Þ

The relation (2:20) guaranties, on the other hand, the existence of global Papangelou intensities. Let � be the DPP
corresponding to the operator K :¼ AðI þ AÞ�1, where A satisfies the hypothesis (H). Recall that the local Papangelou
intensities of � is defined as follows: for each x 2 E, x 2 � �� E, and x =2 � 2 X,

�½��ðx; ��Þ :¼
��ðx��Þ
��ð��Þ

: ð2:21Þ

The global Papangelou intensities are the limits
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�ðx; �Þ :¼ lim
�"E

�½��ðx; ��Þ; ð2:22Þ

whenever the limit exists. The following theorem was proved in [26, Theorem 2.6]:

Theorem 2.2. Let the operator A satisfy the hypothesis (H) and let � be the DPP corresponding to the operator
K ¼ AðI þ AÞ�1. Then for all x 2 E and x =2 � 2 X, the Papangelou intensity �ðx; �Þ exists and it is equal to the number
� in (2:19) obtained by replacing x0 and R1 in (2:18) by x and �, respectively.

Remark 2.3. By (2:13) and (2:21)–(2:22) we see that

�ðx; �Þ ¼ lim
�"E

detA½��ðx��; x��Þ
detA½��ð��; ��Þ

; ð2:23Þ

here A½��ð��; ��Þ is the matrix ðA½��ðx; yÞÞx;y2�� . What we have shown in the above theorem is that it is equal to the limit

�ðx; �Þ ¼ lim
�"E

detAðx��; x��Þ
detAð��; ��Þ

: ð2:24Þ

We will denote the dual relation (2:20) as

�ðx; �Þ�ðx; �Þ ¼ 1: ð2:25Þ

We notice also that for all x 2 E and x =2 � 2 X,

�ðx; �Þ � Aðx; xÞ � kAk: ð2:26Þ

3. Construction of Glauber and Kawasaki Dynamics

In this section we will construct the Glauber and Kawasaki dynamics for DPP’s. We begin by briefly introducing the
general strategy for the existence and ergodicity of the dynamics following [9].

3.1 Existence and Ergodicity

Throughout this subsection we assume that the flip rates bðx; �Þ, dðx; �Þ, and jump rates cðx; y; �Þ are continuous
functions for � 2 X and satisfy the boundedness conditions cð#Þ < 1, # ¼ G or K. Under these conditions the operators
Lð#Þ, # ¼ G or K, in (2:8)–(2:9) are Markov pregenerators [9, Proposition 3.2, Chapter I].

The Markov pregenerators are closable [9, Proposition 2.5, Chapter I], but in order that the closures to be Markov
generators, we need to control the interdependencies of the rate functions. For Glauber dynamics, following [9], we
define for each x 6¼ u 2 E,

�ðGÞðx; uÞ :¼ sup
�63x;u

fjbðx; �Þ � bðx; u�Þj þ jdðx; xu�Þ � dðx; x�Þjg: ð3:1Þ

And we define

MðGÞ :¼ sup
x2E

X
u 6¼x

�ðGÞðx; uÞ: ð3:2Þ

We will need also the lower bound of the flip rates defined by

"ðGÞ :¼ inf
x2E

inf
� 63x

fbðx; �Þ þ dðx; x�Þg: ð3:3Þ

The interdependencies for Kawasaki dynamics will be given in the following way. First define for each x 6¼ u 2 E

�ðKÞðx; uÞ :¼
X
y 6¼x

sup
� 63x;y;u

fjcðx; y; x�Þ � cðx; y; xu�Þj; jcðy; x; y�Þ � cðy; x; yu�Þjg: ð3:4Þ

Then we define

MðKÞ :¼ sup
x2E

X
u 6¼x

�ðKÞðx; uÞ: ð3:5Þ

The lower bound of the rates for Kawasaki dynamics is given by

"ðKÞ :¼ inf
y2E

inf
�63y

X
x2�

cðx; y; �Þ þ
X
x=2y�

cðy; x; y�Þ

( )
: ð3:6Þ

Defining �ð#Þðx; xÞ � 0, we let �ð#Þ ¼ ð�ð#Þðx; uÞÞx;u2E for # ¼ G or K. The following theorem is proven by Liggett
[9, Theorem 3.9, Chapter I]:

Theorem 3.1. For # ¼ G or K, assume that cð#Þ < 1 and Mð#Þ < 1. Then we have
(a) The closure Lð#Þ of Lð#Þ is a Markov generator of a Markov semigroup T ð#Þ

t .
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(b) DðXÞ is a core for Lð#Þ.
(c) For f 2 DðXÞ

�T ð#Þ
t f � e�"ð#Þt expðt�ð#ÞÞ�f :

(d) If f 2 DðXÞ, then T ð#Þ
t f 2 DðXÞ for all t 	 0 and

jjjT ð#Þ
t f jjj � exp½ðMð#Þ � "ð#ÞÞt� jjjf jjj:

Let us now introduce the concept of ergodicity. Recall that a point process 	 on ðX;F Þ is said to be invariant for the
Markov process with semigroup fTt; t 	 0g if Z

Tt fd	 ¼
Z

fd	

for all f 2 CðXÞ and t 	 0. A Markov process with semigroup fTt; t 	 0g is said to be ergodic [9] if
(i) there is a unique invariant measure, say 	0;
(ii) limt!1 	Tt ¼ 	0 for all probability measure 	 on ðX;F Þ.

Theorem 3.2 ([9, Theorem 4.1, Chapter I]). Suppose that the same conditions as in Theorem 3.1 hold. In addition,
if Mð#Þ < "ð#Þ then the process is ergodic. Furthermore, for g 2 DðXÞ,

T ð#Þ
t g�

Z
gd	ð#Þ0

���� ���� � cð#Þ
e�ð"ð#Þ�Mð#ÞÞt

"ð#Þ �Mð#Þ jjjgjjj;

where 	ð#Þ0 is the unique invariant measure.

3.2 Detailed Balance Condition

In this subsection we discuss the detailed balance conditions for Glauber and Kawasaki dynamics. Let � be a point
process and suppose that � has Papangelou intensities �ðx; �Þ. By the general theory, this implies that � satisfies the
DLR-conditions, which read as follows: for all bounded measurable functions F : X ! R and � �� E,Z

�ðd�ÞFð�Þ ¼
Z

�ðd�Þ
1

Z�ð�Þ

X
����

�ð��; ��c ÞFð����c Þ; ð3:7Þ

where Z�ð�Þ ¼
P

���� �ð��; ��c Þ and �ð��; ��c Þ ¼
Qj��j

i¼1 �ðxi; x1 � � � xi�1��c Þ. We refer to [14, 15] for more details.
The detailed balance condition for Glauber and Kawasaki dynamics w.r.t. � means that the pregenerators Lð]Þ, ] ¼ G

or K, are symmetric: Z
�ðd�Þ f ð�ÞLð]Þgð�Þ ¼

Z
�ðd�ÞLð]Þ f ð�Þgð�Þ; f ; g 2 DðXÞ: ð3:8Þ

From the DLR-conditions (3:7) it is not hard to get equivalent conditions for the detailed balance. For simplicity,
we assume that the Papangelou intensities �ðx; �Þ are positive.

Theorem 3.3. Let Lð]Þ, ] ¼ G or K, be the Markovian pregenerators for Glauber and Kawasaki dynamics given in
(2:8) and (2:9). In order that the detailed balance condition (3:8) is satisfied, it is necessary and sufficient that the rate
functions satisfy
(a) for Glauber dynamics: for all x 2 E, x =2 � 2 X,

bðx; �Þ ¼ �ðx; �Þdðx; x�Þ; ð3:9Þ

(b) for Kawasaki dynamics: 8x 6¼ y 2 E, and 8� 2 X with x; y 6¼ �,

�ðx; �Þcðx; y; x�Þ ¼ �ðy; �Þcðy; x; y�Þ: ð3:10Þ

3.3 Glauber and Kawasaki Dynamics for DPP’s

In this subsection, we will concretely define the flip and jump rates for Glauber and Kawasaki dynamics for DPP’s,
and then discuss the existence and ergodicity conditions for the dynamics.

From now on we fix an operator A on H0 that satisfies the hypothesis (H). Thereby we also fix a DPP � with
kernel operator K :¼ AðI þ AÞ�1. We will construct Fellerian Markov generators for Glauber and Kawasaki
dynamics on CðXÞ that leave invariant the above DPP �. Recall the notations in subsection 2.1. In order that the
pregenerators (which are not yet explicitly defined) LðGÞ and LðKÞ in (2:8) and (2:9) would define Markovian
generators for Feller processes, it is needed that the functions bðx; �Þ, dðx; �Þ, and cðx; y; �Þ are continuous functions
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for � 2 X. These flip, or jump rates will be given via the Papangelou intensity function �ðx; �Þ. So, we need the
following

Lemma 3.4. For each x 2 E, the Papangelou intensity �ðx; �Þ of � is a continuous function of � 2 X.

Proof. Recall the definitions �� and �� in (2:18). For each x 2 E and � 2 X with x =2 �, we consider the partition
E ¼ fxg [ � [ �, where � ¼ E n ðx�Þ. For each � �� E we define local functions ��ðx; ��Þ and ��ðx; ��Þ by the
formula (2:18) replacing x0 and R1 by x and �, respectively. As local functions, clearly the functions � 7!��ðx; ��Þ and
� 7!��ðx; ��Þ are continuous on the set f� 2 X : � 63 xg. Now as decreasing limits of continuous functions, the
Papangelou intensity �ðx; �Þ and �ðx; �Þ are both upper semi-continuous functions on f� 2 X : � 63 xg. Since �ðx; �Þ and
�ðx; �Þ are reciprocal to each other, they are also lower semi-continuous. This proves the lemma. �

In the rest of the paper we will use the rate functions given in the following proposition, which we can easily prove.
Recall the variational relation �ðx; �Þ�ðx; �Þ ¼ 1 for all x 2 E and x =2 � 2 X in (2:25).

Proposition 3.5. Assume the hypothesis (H) and let � be the DPP corresponding to the operator K :¼ AðI þ AÞ�1.
Then the following choices for flip rates bðx; �Þ and dðx; �Þ for Glauber dynamics, and jump rates cðx; y; �Þ for
Kawasaki dynamics are uniformly bounded for � 2 X and satisfy the detailed balance conditions w.r.t. �:
(we let x; y 62 �)
(a) for Glauber dynamics:

bðx; �Þ :¼
�ðx; �Þ

1þ �ðx; �Þ
and dðx; x�Þ :¼

�ðx; �Þ
1þ �ðx; �Þ

; ð3:11Þ

(b) for Kawasaki dynamics:

cðx; y; x�Þ ¼ dðx; yÞ�ðy; �Þgð�ðx; �Þ; �ðy; �ÞÞ; ð3:12Þ

where dðx; yÞ is a symmetric weight function, and g : R2
þ ! Rþ is any symmetric, continuous function that makes

cðx; y; x�Þ bounded.

The most simplest example for the function g in the above is gðu; vÞ � 1. However, reflecting on the nature of the
dynamics, including this case, we may choose for any 0 � t � 1,

gðu; vÞ � gtðu; vÞ :¼
1

ð1þ uÞð1þ vÞ

� �t

: ð3:13Þ

Then cðx; y; x�Þ becomes

cðx; y; x�Þ ¼ dðx; yÞ�ðx; �Þt�ðy; �Þ1�t 1

ð1þ �ðx; �ÞÞð1þ �ðy; �ÞÞ

� �t

: ð3:14Þ

Remark 3.6. In the equations (3:11) and (3:14), the terms ð1þ �ðx; �ÞÞ�1 and ðð1þ �ðx; �ÞÞð1þ �ðy; �ÞÞÞ�t are to
make the flip rates bounded. When �ðx; �Þ is uniformly (for �) away from 0, we may drop these terms (taking
bðx; �Þ � �ðx; �Þ and dðx; �Þ � 1 for Glauber dynamics). In [22], we have taken, in our terminology, bðx; �Þ ¼ 1þ �ðx; �Þ
and dðx; x�Þ ¼ 1þ �ðx; �Þ (see [22, eq. (1.9)]).

Now the flip rates for the equilibrium Glauber and Kawasaki dynamics have been given via the Papangelou intensities
�ðx; �Þ, we would like to represent the condition Mð#Þ < 1 in terms of �ðx; �Þ. Let us assume that the weight function
dðx; yÞ in (3:12) satisfies

0 < d1 :¼ inf
x2E

X
y 6¼x

dðx; yÞ � sup
x2E

X
y 6¼x

dðx; yÞ ¼: d2 < 1: ð3:15Þ

Proposition 3.7. Suppose that the flip rates bðx; �Þ and dðx; �Þ and the jump rates cðx; y; x�Þ are given by the
equations (3:11)–(3:12) with the function g in (3:12) given by (3:13), and dðx; yÞ satisfying (3:15). Define

MðGÞ
1 :¼ sup

x2E

X
u 6¼x

sup
�63x;u

ð�ðx; �Þ � �ðx; u�ÞÞ ð3:16Þ

and

MðKÞ
1 :¼ sup

x2E

X
u6¼x

X
y 6¼x

dðx; yÞ sup
� 63x;y;u

ð�ðx; �Þ � �ðx; u�ÞÞ þ ð�ðy; �Þ � �ðy; u�ÞÞ
� �

: ð3:17Þ

Then Mð#Þ � a0M
ð#Þ
1 with a uniform constant a0, and hence if Mð#Þ

1 < 1 then Mð#Þ < 1 for # ¼ G or K, and all the
results in Theorem 3.1 hold.

Proof. The proof immediately follows from the definitions. In particular, for the Kawasaki dynamics, we use the mean
value theorem and the boundedness of the partial derivatives for the function gtðu; vÞ ¼ ðð1þ uÞð1þ vÞÞ�t. �
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In order to get the boundedness of Mð#Þ
1 , # ¼ G or K, we have to know the quantities �ðx; �Þ � �ðx; u�Þ in (3:16)–

(3:17) more in detail. For that purpose we briefly introduce the restriction theory of reproducing kernel Hilbert spaces
[1]. Let H be any RKHS (on E) with RK Cðx; yÞ. Let R � E be any (finite or infinite) subset of E, and let CRðx; yÞ,
x; y 2 R, denote the restriction of C to the set R. It was shown by Aronszajn that CRðx; yÞ is the RK of the RKHS, call it
HR;CR

, on the set R consisting of all restrictions of H to the set R [1]. We let k � kC and k � kR;CR
denote the norms on H

and HR;CR
, respectively. Then k � kR;CR

is given by for each f 2 HR;CR
,

k f kR;CR
:¼ inffkeffkC : eff ðxÞ ¼ f ðxÞ for all x 2 Rg: ð3:18Þ

Moreover, for each f 2 HR;CR
, there is a unique vector f 0 2 H whose restriction to R is f and

k fkR;CR
¼ k f 0kC: ð3:19Þ

By the restriction theory for the RKHS’s, the key terms �ðx; �Þ � �ðx; u�Þ in the above proposition have the following
representations (see [27, Proposition 3.2]):

Proposition 3.8. For any x 6¼ u 2 E and x; u =2 � � E, we have

�ðx; �Þ � �ðx; u�Þ ¼ ðex; euÞ�c ;B�c

��� ���2keuk�2
�c;B�c

: ð3:20Þ

In particular, in a formal way, we also have the representation:

�ðx; �Þ � �ðx; u�Þ ¼ Aðx; uÞ � Aðx; �ÞAð�; �Þ�1Að�; uÞ
�� ��2 �ðu; �Þ�1: ð3:21Þ

In the next section we will discuss some sufficient conditions so that we can control �ðx; �Þ � �ðx; u�Þ uniformly
for �.

4. Examples

In this section we discuss some examples for which the resulting Glauber and Kawasaki dynamics are Fellerian
Markov processes on CðXÞ and leave invariant certain DPP’s. In Proposition 3.7 we have seen that if we could control
the interdependencies; Mð#Þ

1 < 1, then we are done. Unfortunately we couldn’t do it under our hypothesis (H), so we
impose further stronger conditions on the operator A. For any complex number z 2 C, we let jzj1 :¼ jRe zj þ j Im zj.

Assumption (A): Let A be a positive definite, bounded linear operator on H0 � l2ðEÞ. We assume that there is a 
 > 0

such that

inf
x2E

Aðx; xÞ �
X
y 6¼x

jAðx; yÞj1

 !
	 
:

Any operator A that satisfies the Assumption (A) is said to be diagonally dominant. When one considers the
convolution operators on l2ðZdÞ, it is not hard to see that there are many operators A that satisfy the assumption (A). For
example, let Cðx; yÞ � Cðx� yÞ be the convolution operator on l2ðZdÞ coming from the Fourier coefficients Cð�Þ of a
sufficiently smooth positive function �ðtÞ on the torus Td. Then the components Cðx; yÞ decrease fast enough so thatP

y jCðx; yÞj < 1. We may then take A :¼ aI þ C for some positive numbers a.
Throughout this section we suppose that our operators A satisfy the assumption (A). Let us fix a constant q > 0

so that

q 	 qðAÞ :¼ sup
x2E

X
y 6¼x

jAðx; yÞj1: ð4:1Þ

We define a Q-matrix bQQ on E by

bQQðx; yÞ ¼
1

q
jAðx; yÞj1; x 6¼ y

�
X
y 6¼x

1

q
jAðx; yÞj1; x ¼ y.

8>>><>>>: ð4:2Þ

Let b�� be a stochastic matrix on E defined by b�� :¼ bQQþ I: ð4:3Þ

The following lemma is an analogue of [22, Lemma 4.1]. The proof follows by modifying the idea of the proof in [22]
and we leave it at the appendix for readers’ convenience.

Lemma 4.1. Assume that the operator A satisfies the assumption (A). Then for any � � E, the submatrix Að�; �Þ is
invertible and for any x; y 2 �,
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jAð�; �Þ�1ðx; yÞj � Mðx; yÞ :¼

1



; x ¼ y,

1



�ðx; yÞ; x 6¼ y.

8>><>>: ð4:4Þ

where � :¼
P1

n¼1ð
q


þq
b��Þn.

With the help of the above lemma, we are able to state our main result.

Theorem 4.2. Suppose that the operator A satisfies the assumption (A). Let us take the flip rates bðx; �Þ, dðx; �Þ, and
cðx; y; �Þ as stated in Proposition 3.7. Then the hypotheses of Theorem 3.1 are satisfied and hence all the statements of
Theorem 3.1 hold and the DPP � corresponding to the kernel operator K :¼ AðI þ AÞ�1 is invariant under the Glauber
and Kawasaki dynamics. Further, in addition to it, if qðAÞ in (4:1) is sufficiently small, then the Markov processes are
ergodic and the statements in Theorem 3.2 hold.

Proof. For the existence of Markov processes for Glauber and Kawasaki dynamics, by Proposition 3.7, it is enough to
check that Mð#Þ

1 , # ¼ G or K, defined in (3:16)–(3:17), are finite. Under the assumption (A), (3:21) has a rigorous
meaning. By Lemma 4.1, A and any submatrix of A are boundedly invertible and we have kAð�; �Þ�1k � ð
 þ qÞ=
2,
uniformly for � 2 E. Then we easily see that �ðx; �Þ ¼ ðAðx�; x�Þ�1ðx; xÞÞ�1, and Lemma 4.1 gives the bound:

�ðx; �Þ 	 
; uniformly for x 2 E and x =2 � � E: ð4:5Þ

By using again the result of Lemma 4.1 in (3:21) we see that

sup
�63x;u

jAðx; �ÞAð�; �Þ�1Að�; uÞj � sup
� 63x;u

X
y;z2�

jAðx; yÞjMðy; zÞjAðz; uÞj

�
X

y;z2Enfx;ug
jAðx; yÞjMðy; zÞjAðz; uÞj: ð4:6Þ

Hence we have by (3:21) and (4:5)–(4:6)

MðGÞ
1 ¼ sup

x2E

X
u 6¼x

sup
�63x;u

ð�ðx; �Þ � �ðx; u�ÞÞ

� sup
x2E

X
u6¼x

jAðx; uÞj þ
X

y;z2Enfx;ug
jAðx; yÞjMðy; zÞjAðz; uÞj

 !
1




� qþ q2

 þ q


2

� �
1



¼

q



1þ q


 þ q


2

� �
< 1: ð4:7Þ

In a very similar way it follows that MðKÞ
1 < 1.

The flip or jump rates are chosen so that the Markov processes satisfy the detailed balance conditions w.r.t. the DPP
�. So, � is reversible for both Glauber and Kawasaki dynamics, and hence � is invariant under the dynamics
(see [9, Propositions 5.2 and 5.3, Chapter II]).

In order to check the ergodicity we have to know the quantities "ð#Þ, # ¼ G or K. By using the definition of the flip
and jump rates and also by using the property (4:5) it is not hard to check that

"ðGÞ ¼ 1 and "ðKÞ 	 d1 

1

ð1þ kAkÞ2t
; ð4:8Þ

where d1 is the constant in (3:15) and kAk is the operator norm of A. By Proposition 3.7, (4:7), and (4:8), we see that if
q is small enough, then Mð#Þ < "ð#Þ, and this completes the proof. �

Appendix

In this appendix we provide with the proof of Lemma 4.1. The main ingredients of the method are the Markov chain
on the discrete set E, Feynman-Kac formula, and the comparison of stochastic matrices of the Markov chains. The
central idea was introduced in the proof of [22, Lemma 4.1].

Proof of Lemma 4.1. We first assume that A is a real matrix. For each � � E, we define a Q-matrix Q� on the set
� [ � [ f@g, where @ is an abstract extra point playing as a cemetery (when � � E, we just ignore it), and � is also an
abstract set consisting of the elements of copies of �; we denote them as � :¼ fx : x 2 �g. We define

Q�ðx; yÞ � Q�ðx; yÞ :¼
1

q
Aðx; yÞ�; x 6¼ y 2 �;

Q�ðx; yÞ � Q�ðx; yÞ :¼
1

q
Aðx; yÞþ; x 6¼ y 2 �;
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Q�ðx; xÞ � Q�ðx; xÞ :¼ 0; x 2 �;

Q�ðx; xÞ � Q�ðx; xÞ :¼ �
X

y2E; y 6¼x

1

q
jAðx; yÞj; x 2 �;

Q�ðx; @Þ � Q�ðx; @Þ :¼
X
y2En�

1

q
jAðx; yÞj; x 2 �;

Q�ð@; xÞ � Q�ð@; xÞ � Q�ð@; @Þ :¼ 0; x 2 �; ðA:1Þ
here a
 :¼ maxf
a; 0g for each real number a. Given a function f 2 l1ð�Þ, we extend it to a function eff 2
l1ð� [ � [ f@gÞ by

eff ðexxÞ :¼ f ðxÞ; exx ¼ x

� f ðxÞ; exx ¼ x

0; exx ¼ @.

8<: ðA:2Þ

We consider the anti-symmetric subspace l1a ð� [ � [ f@gÞ of l1ð� [ � [ f@gÞ defined by

l1a ð� [ � [ f@gÞ :¼ f f 2 l1ð� [ � [ f@gÞ : f ðxÞ ¼ � f ðxÞ; f ð@Þ ¼ 0g: ðA:3Þ

We notice that Q� can be regarded as an operator on l1a ð� [ � [ f@gÞ. We define a function V�ðexxÞ on � [ � [ f@g by
for x 2 �,

V�ðxÞ ¼ V�ðxÞ :¼
1

q
�Aðx; xÞ þ

X
y2E: y 6¼x

jAðx; yÞj

 !
; and V�ð@Þ ¼ 0: ðA:4Þ

Now we consider the equation:

ðAð�; �Þ f ÞðxÞ ¼ hðxÞ; x 2 �; ðA:5Þ

for h 2 l1ð�Þ. By the definition of the Q-matrix Q�, the equation (A·5) is equivalent to

� ðQ� þ V�Þeff ¼ 1

q
ehh: ðA:6Þ

Let us define a stochastic matrix �� on � [ � [ f@g by
�� :¼ Q� þ I�[�[f@g: ðA:7Þ

Let fXð�Þ
t : t 	 0g be the Markov chain on � [ � [ f@g generated by Q�. Then by the Feynman-Kac formula, we haveeff ðexxÞ ¼ �

1

q
ðQ� þ V�Þ�1ehhðexxÞ

¼
1

q
E ~xx

Z 1

0

ehhðXð�Þ
t Þ exp

Z t

0

V�ðXð�Þ
s Þds

� �
dt

� �
: ðA:8Þ

Let us now take h :¼ �y, the Dirac function at the point y. Then the solution f ðxÞ in (A·5) is f ðxÞ ¼ Að�; �Þ�1ðx; yÞ,
thus we have (notice that e�y�y ¼ �y � �y)

jAð�; �Þ�1ðx; yÞj �
1

q
Ex

Z 1

0

�yð�ðXð�Þ
t ÞÞ exp

Z t

0

V�ð�ðXð�Þ
s ÞÞds

� �
dt

� �
; ðA:9Þ

where � is a projection operator on � [ � [ f@g defined by

�ðxÞ � �ðxÞ :¼ x and �ð@Þ :¼ @: ðA:10Þ

We would like to estimate the r.h.s. of (A·9). For this, we introduce another Q-matrix bQQ� on � [ f@g by

bQQ�ðx; yÞ ¼

1

q
jAðx; yÞj; x 6¼ y, x; y 2 �,

�
1

q

X
z2E: z 6¼x

jAðx; zÞj; x ¼ y 2 �,

8>>><>>>:
bQQ�ðx; @Þ ¼

1

q

X
z2En�

jAðx; zÞj; x 2 �;

bQQ�ð@; yÞ � bQQ�ð@; @Þ ¼ 0; y 2 �: ðA:11Þ

We also define a stochastic matrix b��� on � [ f@g byb��� :¼ bQQ� þ I�[f@g: ðA:12Þ
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Then we notice that the probability law of the chain f�ðXð�Þ
t Þg on � [ f@g is the same as that of the Markov chain on

� [ f@g generated by bQQ�. By the assumption (A) we notice that V� � �
=q. Thus by using the strong Markov property
we get

jAð�; �Þ�1ðx; yÞj �
1

q
kðbQQ� þ V�Þ�1k1 Ex e�
=q
ð�Þy ; 
ð�Þy < 1

h i
; ðA:13Þ

where 
ð�Þy is the first hitting time at y of the chain f�ðXð�Þ
t Þg, and kðbQQ� þ V�Þ�1k1 is the operator norm of ðbQQ� þ V�Þ�1

acting on l1ð� [ f@gÞ, which satisfies the bound:

kðbQQ� þ V�Þ�1k1 � q=
: ðA:14Þ

Since 
ð�Þx ¼ 0 for the Markov process starting at x, we see from (A·13) and (A·14) that

jAð�; �Þ�1ðx; xÞj � 1=
: ðA:15Þ

This is the bound in the lemma for the diagonal components. In order to estimate jAð�; �Þ�1ðx; yÞj for x 6¼ y, we define

uð�Þy ðxÞ :¼ Ex e�
=q
ð�Þy ; 
ð�Þy < 1
h i

; x 6¼ y: ðA:16Þ

If we let 
 the random variable which is exponentially distributed with parameter 1, then we have the identity:

uð�Þy ðxÞ ¼ E e�
=q

� � b���ðx; yÞ þ

X
z2�: z 6¼y

b���ðx; zÞuð�Þy ðzÞ

" #

¼
q


 þ q

� � b���ðx; yÞ þ
X

z2�: z6¼y

b���ðx; zÞuð�Þy ðzÞ

" #

¼
X1
n¼1

q


 þ q
b���

� �n

ðx; yÞ: ðA:17Þ

Now by the definition of bQQ�ðx; yÞ in (A·11) we see that for � � �0,b���ðx; yÞ ¼ b���0 ðx; yÞ whenever x; y 2 �: ðA:18Þ

Also, since @ plays as a cemetery, once the process visits @, it never comes out from it. Therefore, the nonzero
contributions in the term ðb���Þnðx; yÞ come only from the random walk path of length n connecting x and y on the set �
(avoiding the cemetery @). Obviously, such a number of paths increases as the set � increases. Therefore the last
presentation of (A·17) is bounded by �ðx; yÞ where

� :¼
X1
n¼1

q


 þ q
b��� �n

; ðA:19Þ

with b�� :¼ b��E. Inserting this and (A·14) into (A·13) we get the bound in the lemma for off-diagonal components.
Together with (A·15) we are done in the case that A is a real matrix. When A is a complex matrix, we write
A ¼ A1 þ iA2, where A1 and A2 are real matrices. Let E1 and E2 be two copies of E. Then we have the bijection

l2ðEÞ 3 f ¼ f1 þ i f2 7! f1 � f2 2 l2realðE1Þ � l2realðE2Þ ¼� l2realðE1 [ E2Þ; ðA:20Þ

where l2realð�Þ means the real Hilbert space. Under this map, A in l2ðEÞ is equivalent to the matrix

eAA ¼
A1 �A2

A2 A1

� �
ðA:21Þ

acting on l2realðE1 [ E2Þ. Similary, for any subset � � E, the submatrix Að�; �Þ acting on l2ð�Þ is equivalent to the
submatrix

eAAð�; �Þ ¼ A1ð�; �Þ �A2ð�; �Þ
A2ð�; �Þ A1ð�; �Þ

� �
ðA:22Þ

of eAA acting on l2realð�1 [ �2Þ, where �i, i ¼ 1; 2, are again the copies of �. Notice that the enlarged real matrix eAA satisfies
the conditions of the lemma with E being replaced by E1 [ E2. Let Að�; �Þ�1 � C þ iD, where C and D are real
matrices. Then we can check that

C ¼ P�1
eAAð�; �Þ�1P�1 and D ¼ �P�1

eAAð�; �Þ�1P�2 ; ðA:23Þ

where P�i , i ¼ 1; 2, are the projections on l2realð�1 [ �2Þ onto l2realð�iÞ, i ¼ 1; 2, respectively. So, jAð�; �Þ�1ðx; yÞj �
jCðx; yÞj þ jDðx; yÞj, and by (A·23) and applying the result for the real case we also arrive at the conclusion for the
complex case. �

Glauber and Kawasaki Dynamics for Determinantal Point Processes in Discrete Spaces 387



Acknowledgments

We thank the referee for valuable comments which improved the paper greatly. This work was supported by the
Korea–Japan Basic Scientific Cooperation Program ‘‘Noncommutative Stochastic Analysis and Its Applications to
Network Science.’’

REFERENCES

[1] Aronszajn, N., ‘‘Theory of reproducing kernels,’’ Trans. Amer. Math. Soc., 68: 337–404 (1950).
[2] Georgii, H.-O., Gibbs measures and phase transitions, Walter de Gruyter, Berlin, New York (1988).
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